Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Surg J (N Y) ; 10(1): e1-e10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38528856

RESUMEN

Aim of the Study Mucormycosis is a rare invasive and fatal fungal infection and its resurgence in coronavirus disease 2019 (COVID-19) patients has been a matter of grave concern. It is essentially a medical disease, but surgical debridement of necrotic tissues is of paramount importance leading to severe craniofacial deformities. In this case series, we present our experience with the feasibility of early reconstruction after surgical debridement. Case Series As a Dedicated COVID Center (DCH), the institute received the largest population of COVID-19 mucormycosis patients from the entire eastern region of the country between May 2021 and August 2021. More than 5,000 COVID-19 were admitted out of which 218 patients were diagnosed with mucormycosis. Nine patients, seven males and two females, with a mean age of 39 years with craniofacial mucormycosis underwent debridement and early reconstructions (2-4 weeks from first debridement and start of antifungal therapy) with free and pedicled flaps. All flaps survived and showed no evidence of recurrence. The average time of the early reconstruction after surgical debridement was 1.7 weeks once the course of systemic amphotericin B was received. Conclusion After aggressive surgical resection and a short course of antifungal therapy, early reconstruction can be done safely based on clinical criteria, as long as there is no evidence of hyphae invasion on wound edges in the intraoperative pathology examination.

3.
Diagnostics (Basel) ; 13(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37046489

RESUMEN

BACKGROUND: Hepatopulmonary syndrome (HPS) is a pulmonary vasculature complication in the setting of liver disease that is characterized by pathological vasodilation resulting in arterial oxygenation defects. We investigated the role of extracellular vesicles (EV) in cirrhosis patients with HPS, as well as the functional effect of EV administration in a common bile duct ligation (CBDL) HPS mouse model. METHODS: A total of 113 cirrhosis patients were studied: 42 (Gr. A) with HPS and 71 (Gr. B) without HPS, as well as 22 healthy controls. Plasma levels of EV associated with endothelial cells, epithelial cells, and hepatocytes were measured. The cytokine cargoes were estimated using ELISA. The effect of EV administered intranasally in the CBDL mouse model was investigated for its functional effect in vascular remodeling and inflammation. RESULTS: We found endothelial cells (EC) associated EV (EC-EV) were elevated in cirrhosis patients with and without HPS (p < 0.001) than controls. EC-EV levels were higher in HPS patients (p = 0.004) than in those without HPS. The epithelial cell EVs were significantly high in cirrhosis patients than controls (p < 0.001) but no changes found in patients with HPS than without. There was a progressive increase in EC-EV levels from mild to severe intrapulmonary shunting in HPS patients (p = 0.02 mild vs. severe), and we were able to predict severe HPS with an AUROC of 0.85; p < 0.001. An inverse correlation of EC-EVs was found with hemoglobin (r = -0.24; p = 0.031) and PaO2 (r = 0.690; p = 0.01) and a direct correlation with MELD (r = 0.32; p = 0.014). Further, both TNF-α (p = 0.001) and IL-1ß (p = 0.021) as cargo levels were significantly elevated inside the EVs of HPS patients than without HPS. Interestingly, upon administration of intranasal EVs, there was a significant decrease in Evans blue accumulation and lung wet-dry ratio (p = 0.042; 0.038). A significant reduction was also noticed in inflammation and cholestasis. CONCLUSION: High levels of plasma EC-EV levels were found in patients with HPS with elevated pro-inflammatory cytokine cargoes. EC-EVs were indicative of severe HPS condition. In the CBDL HPS model, we were able to prove the beneficial effects of improving vascular tone, inflammation, and liver pathogenesis.

4.
J Hepatol ; 79(1): 167-180, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36996943

RESUMEN

BACKGROUND & AIMS: Hepatopulmonary syndrome (HPS) is characterised by a defect in arterial oxygenation induced by pulmonary vascular dilatation in patients with liver disease. Fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator, suppresses vasodilation by reducing nitric oxide (NO) production. We investigated the role of S1P in patients with HPS and the role of fingolimod as a therapeutic option in an experimental model of HPS. METHODS: Patients with cirrhosis with HPS (n = 44) and without HPS (n = 89) and 25 healthy controls were studied. Plasma levels of S1P, NO, and markers of systemic inflammation were studied. In a murine model of common bile duct ligation (CBDL), variations in pulmonary vasculature, arterial oxygenation, liver fibrosis, and inflammation were estimated before and after administration of S1P and fingolimod. RESULTS: Log of plasma S1P levels was significantly lower in patients with HPS than in those without HPS (3.1 ± 1.4 vs. 4.6 ± 0.2; p <0.001) and more so in severe intrapulmonary shunting than in mild and moderate intrapulmonary shunting (p <0.001). Plasma tumour necrosis factor-α (76.5 [30.3-91.6] vs. 52.9 [25.2-82.8]; p = 0.02) and NO (152.9 ± 41.2 vs. 79.2 ± 29.2; p = 0.001) levels were higher in patients with HPS than in those without HPS. An increase in Th17 (p <0.001) and T regulatory cells (p <0.001) was observed; the latter inversely correlated with plasma S1P levels. In the CBDL HPS model, fingolimod restored pulmonary vascular injury by increasing the arterial blood gas exchange and reducing systemic and pulmonary inflammation, resulting in improved survival (p = 0.02). Compared with vehicle treatment, fingolimod reduced portal pressure (p <0.05) and hepatic fibrosis and improved hepatocyte proliferation. It also induced apoptotic death in hepatic stellate cells and reduced collagen formation. CONCLUSIONS: Plasma S1P levels are low in patients with HPS and even more so in severe cases. Fingolimod, by improving pulmonary vascular tone and oxygenation, improves survival in a murine CBDL HPS model. IMPACT AND IMPLICATIONS: A low level of plasma sphingosine-1-phosphate (S1P) is associated with severe pulmonary vascular shunting, and hence, it can serve as a marker of disease severity in patients with hepatopulmonary syndrome (HPS). Fingolimod, a functional agonist of S1P, reduces hepatic inflammation, improves vascular tone, and thus retards the progression of fibrosis in a preclinical animal model of HPS. Fingolimod is being proposed as a potential novel therapy for management of patients with HPS.


Asunto(s)
Síndrome Hepatopulmonar , Ratas , Ratones , Animales , Síndrome Hepatopulmonar/tratamiento farmacológico , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Ratas Sprague-Dawley , Cirrosis Hepática/complicaciones , Niacinamida/uso terapéutico , Inflamación/complicaciones
5.
Mol Pharm ; 19(5): 1309-1324, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35333535

RESUMEN

Nucleic acids, both DNA and small RNAs, have emerged as potential therapeutics for the treatment of various lung disorders. However, delivery of nucleic acids to the lungs is challenging due to the barrier property imposed by mucus, which is further reinforced in disease conditions such as chronic obstructive pulmonary disease and asthma. The presence of negatively charged mucins imparts the electrostatic barrier property, and the mesh network structure of mucus provides steric hindrance to the delivery system. To overcome this, the delivery system either needs to be muco-inert with a low positive charge such that the interactions with mucus are minimized or should have the ability to transiently dismantle the mucus structure for effective penetration. We have developed a mucus penetrating system for the delivery of both small RNA and plasmid DNA independently. The nucleic acid core consists of a nucleic acid (pDNA/siRNA) and a cationic/amphipathic cell penetrating peptide. The mucus penetrating coating consists of the hydrophilic biopolymer chondroitin sulfate A (CS-A) conjugated with a mucolytic agent, mannitol. We hypothesize that the hydrophilic coating of CS-A would reduce the surface charge and decrease the interaction with negatively charged mucins, while the conjugated mannitol residues would disrupt the mucin-mucin interaction or decrease the viscosity of mucus by increasing the influx of water into the mucus. Our results indicate that CS-A-mannitol-coated nanocomplexes possess reduced surface charge, reduced viscosity of artificial mucus, and increased diffusion in mucin suspension as well as increased penetration through the artificial mucus layer as compared to the non-coated ones. Further, the coated nanocomplexes showed low cytotoxicity as well as higher transfection in A-549 and BEAS-2B cells as compared to the non-coated ones.


Asunto(s)
Péptidos de Penetración Celular , Nanopartículas , Ácidos Nucleicos , Péptidos de Penetración Celular/metabolismo , Portadores de Fármacos/química , Pulmón/metabolismo , Manitol/metabolismo , Mucinas/metabolismo , Moco/metabolismo , Nanopartículas/química , Ácidos Nucleicos/metabolismo
6.
Cureus ; 13(7): e16394, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34408947

RESUMEN

INTRODUCTION: The incidence of rheumatic heart disease is very high in India. The data on the pattern of valvular heart diseases during pregnancy and its outcomes is very scarce. Again, the data in the Indian scenario, the differences in outcomes between different grades of valvular heart diseases and its impact on pregnancy outcomes is very less. We planned to study the different patterns of valvular heart diseases during pregnancy and their outcomes with respect to cardiac complication and perinatal outcomes. MATERIALS AND METHODS: It was a hospital-based prospective observational study. We recruited 71 patients after taking written informed consent. All patients were with term gestation and valvular heart diseases. We did 2D echocardiography to analyze the valve lesion and assess the valve lesion with its maternal and perinatal outcomes. RESULTS: The mean age of participants in the study was 27 + 5.2 years. A total of 54 patients (76.1%) were less than 30 years and 17 (23.9%) were more than 30 years of age. Six patients (8.5%) presented with New York Heart Association (NYHA) class I, 39 patients (54.9%) presented with NYHA class II, 25 patients (35.2%) presented with NYHA class III and one patient (1.4%) presented with NYHA class IV. The most common etiology of valvular heart diseases was found to be rheumatic in 62 patients (87.3%). The most common valve involved was the mitral valve (69%). New-onset atrial fibrillation (AF) was reported in 26.8% patients and pulmonary edema developed in 15.5% patients. Live birth was observed in 66 patients (93%) compared to stillbirth reported in five patients (7%). CONCLUSION: No significant difference in maternal and perinatal outcomes between moderate and severe grades of different valvular heart diseases.

7.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34445195

RESUMEN

BACKGROUND: Runt-related transcription factor (RUNX1) regulates inflammation in non-alcoholic steatohepatitis (NASH). METHODS: We performed in vivo targeted silencing of the RUNX1 gene in liver sinusoidal endothelial cells (LSECs) by using vegfr3 antibody tagged immunonano-lipocarriers encapsulated RUNX1 siRNA (RUNX1 siRNA) in murine models of methionine choline deficient (MCD) diet-induced NASH. MCD mice given nanolipocarriers-encapsulated negative siRNA were vehicle, and mice with standard diet were controls. RESULTS: Liver RUNX1 expression was increased in the LSECs of MCD mice in comparison to controls. RUNX1 protein expression was decreased by 40% in CD31-positive LSECs of RUNX1 siRNA mice in comparison to vehicle, resulting in the downregulation of adhesion molecules, ICAM1 expression, and VCAM1 expression in LSECs. There was a marked decrease in infiltrated T cells and myeloid cells along with reduced inflammatory cytokines in the liver of RUNX1 siRNA mice as compared to that observed in the vehicle. CONCLUSIONS: In vivo LSEC-specific silencing of RUNX1 using immunonano-lipocarriers encapsulated siRNA effectively reduces its expression of adhesion molecules, infiltrate on of immune cells in liver, and inflammation in NASH.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Inflamación/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Inflamación/terapia , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/terapia , ARN Interferente Pequeño/uso terapéutico , Tratamiento con ARN de Interferencia
8.
PLoS One ; 16(2): e0247115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33596239

RESUMEN

The rapid emergence of coronavirus disease 2019 (COVID-19) as a global pandemic affecting millions of individuals globally has necessitated sensitive and high-throughput approaches for the diagnosis, surveillance, and determining the genetic epidemiology of SARS-CoV-2. In the present study, we used the COVIDSeq protocol, which involves multiplex-PCR, barcoding, and sequencing of samples for high-throughput detection and deciphering the genetic epidemiology of SARS-CoV-2. We used the approach on 752 clinical samples in duplicates, amounting to a total of 1536 samples which could be sequenced on a single S4 sequencing flow cell on NovaSeq 6000. Our analysis suggests a high concordance between technical duplicates and a high concordance of detection of SARS-CoV-2 between the COVIDSeq as well as RT-PCR approaches. An in-depth analysis revealed a total of six samples in which COVIDSeq detected SARS-CoV-2 in high confidence which were negative in RT-PCR. Additionally, the assay could detect SARS-CoV-2 in 21 samples and 16 samples which were classified inconclusive and pan-sarbeco positive respectively suggesting that COVIDSeq could be used as a confirmatory test. The sequencing approach also enabled insights into the evolution and genetic epidemiology of the SARS-CoV-2 samples. The samples were classified into a total of 3 clades. This study reports two lineages B.1.112 and B.1.99 for the first time in India. This study also revealed 1,143 unique single nucleotide variants and added a total of 73 novel variants identified for the first time. To the best of our knowledge, this is the first report of the COVIDSeq approach for detection and genetic epidemiology of SARS-CoV-2. Our analysis suggests that COVIDSeq could be a potential high sensitivity assay for the detection of SARS-CoV-2, with an additional advantage of enabling the genetic epidemiology of SARS-CoV-2.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , COVID-19/genética , Genoma Viral/genética , Humanos , India/epidemiología , Epidemiología Molecular/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Pandemias , Filogenia , ARN Viral/genética , ARN Viral/aislamiento & purificación , Sensibilidad y Especificidad
9.
ACS Appl Mater Interfaces ; 13(2): 2382-2398, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33406837

RESUMEN

In this article, we describe a method of delivery of chondroitin sulfate to skin as nanoparticles and demonstrate its anti-inflammatory and antioxidant role using UV irradiation as a model condition. These nanoparticles, formed through electrostatic interactions of chondroitin sulfate with a skin-penetrating peptide, were found to be homogenous with positive surface charges and stable at physiological and acidic pH under certain conditions. They were able to enter into the human keratinocyte cell line (HaCaT), artificial skin membrane (mimicking the human skin), and mouse skin tissue unlike free chondroitin sulfate. The preapplication of nanoparticles also exhibited reduced levels of oxidative stress, cyclobutane pyrimidine dimer formation, TNF-α, and so on in UV-B-irradiated HaCaT cells. In an acute UV-B irradiation mouse model, their topical application resulted in reduced epidermal thickness and sunburn cells, unlike in the case of free chondroitin sulfate. Thus, a completely noninvasive method was used to deliver a bio-macromolecule into the skin without using injections or abrasive procedures.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Sulfatos de Condroitina/administración & dosificación , Portadores de Fármacos/química , Péptidos/química , Quemadura Solar/prevención & control , Administración Tópica , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacocinética , Antioxidantes/uso terapéutico , Línea Celular , Sulfatos de Condroitina/farmacocinética , Sulfatos de Condroitina/uso terapéutico , Portadores de Fármacos/metabolismo , Femenino , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Nanopartículas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Péptidos/metabolismo , Absorción Cutánea , Quemadura Solar/metabolismo , Quemadura Solar/patología , Rayos Ultravioleta/efectos adversos
10.
ACS Omega ; 4(24): 20547-20557, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31858039

RESUMEN

Nonviral gene delivery has seen major progress in the last two decades owing to facile synthesis, low toxicity, and ease of modification of nanocarriers that take nucleic acids to cells and tissues. Gene delivery nanocomplexes need to reach the target locations in significant amounts by overcoming multiple barriers. While the importance of nanocomplex stability, cellular uptake, intracellular trafficking, and nuclear localization has been studied extensively, the role of cellular retention and recycling of these nanocomplexes is less understood in the context of gene delivery. In this study, we used different DNA carriers and made efforts to understand the role played by cellular retention in determining their gene delivery efficiency across multiple cell lines. In addition, we also analyzed whether state of complexation and localization of the nanocomplexes play a role in conjunction with cellular retention. We observed higher transfection efficiencies for nanocomplexes showing better retention, lower unpackaging, and low recycling. Our data also suggests that nanocomplexes made of peptides with terminal cysteine modification show enhanced retention and transfection efficiency compared to their counterparts with no terminal cysteine. Overall, the work highlights myriad of factors to be considered for improving gene delivery efficiency of nanocomplexes.

11.
Chem Asian J ; 14(13): 2278-2290, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31062934

RESUMEN

A tandem IBX-promoted oxidation of primary alcohol to aldehyde and opening of intermediate ß,γ-diolcarbonate aldehyde to (E)-γ-hydroxy-α,ß-enal has been developed. Remarkably, the carbonate opening delivered exclusively (E)-olefin and no over-oxidation of γ-hydroxy was observed. The method developed has been extended to complete the stereoselective total synthesis of both (S)- and (R)-coriolides and d-xylo- and d-arabino-C-20 guggultetrols.

12.
Saudi J Biol Sci ; 25(7): 1454-1467, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30505195

RESUMEN

Biosorption is an effective treatment method for the removal of phenol and cyanide from aqueous solution by saw dust activated carbon (SDAC). Batch experiments were achieved as a function of several experimental parameters, i.e. influence of biosorbent dose (5-60 g/L) contact time (2-40 h), pH (4-12), initial phenol concentration (100-1000 mg/L) and initial cyanide concentration (10-100 mg/L) and temperature (20-40 °C). The biosorption capacities of the biosorbent were detected as 178.85 mg/g for phenol with 300 mg/L of initial concentration and 0.82 mg/g for cyanide with 30 mg/L of initial concentration. The optimum pH is found to be 8 for phenol and 9 for cyanide biosorption. The mono component biosorption equilibrium data for both phenol and cyanide were well defined by Redlich-Peterson model and binary component adsorption equilibrium data well fitted by extended Freundlich model. The percentage removal of phenol and cyanide using SDAC was 66.67% and 73.33%, respectively. Equilibrium established within 30 h for phenol and 28 h for cyanide. Kinetic studies revealed that biosorption of phenol followed pseudo second order indicating adsorption through chemisorption and cyanide followed pseudo first order kinetic model indicating adsorption through physisorption. Thermodynamic studies parameters, i.e., enthalpy (Δh 0), entropy (ΔS 0) and Gibb's free energy (ΔG 0) have also been considered for the system. Thermodynamic modeling studies revealed that the process of cyanide biosorption was endothermic and phenol biosorption was exothermic in nature.

13.
Biochem J ; 462(2): 347-58, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24902849

RESUMEN

The host-mediated RNAi pathways restrict replication of viruses in plant, invertebrate and vertebrate systems. However, comparatively little is known about the interplay between RNAi and various viral infections in mammalian hosts. We show in the present study that the siRNA-mediated silencing of Drosha, Dicer and Ago2 [argonaute RISC (RNA-induced silencing complex) catalytic component 2] transcripts in Huh7 cells resulted in elevated levels of HBV (hepatitis B virus)-specific RNAs and, conversely, we observed a decrease in mRNA and protein levels of same RNAi components in HepG2 cells infected with HBV. Similar reductions were also detectable in CHB (chronic hepatitis B) patients. Analysis of CHB liver biopsy samples, with high serum HBV DNA load (>log108 IU/ml), revealed a reduced mRNA and protein levels of Drosha, Dicer and Ago2. The low expression levels of key RNAi pathway components in CHB patient samples as well as hepatic cells established a link between HBV replication and RNAi components. The HBV proteins were also examined for RSS (RNA-silencing suppressor) properties. Using GFP-based reversion of silencing assays, in the present study we found that HBx is an RSS protein. Through a series of deletions and substitution mutants, we found that the full-length HBx protein is required for optimum RSS activity. The in vitro dicing assays revealed that the HBx protein inhibited the human Dicer-mediated processing of dsRNAs into siRNAs. Together, our results suggest that the HBx protein might function as RSS to manipulate host RNAi defence, in particular by abrogating the function of Dicer. The present study may have implications in the development of newer strategies to combat HBV infection.


Asunto(s)
Virus de la Hepatitis B/fisiología , Interferencia de ARN , Transactivadores/fisiología , Adulto , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Línea Celular Tumoral , Femenino , Células HEK293 , Hepatitis B Crónica/metabolismo , Humanos , Hígado/metabolismo , Masculino , Mutación , Sistemas de Lectura Abierta , ARN Bicatenario/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transactivadores/genética , Proteínas Reguladoras y Accesorias Virales , Replicación Viral , Adulto Joven
14.
PLoS One ; 9(3): e91745, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24633222

RESUMEN

Hepatitis B viral infection-induced hepatocellular carcinoma is one of the major problems in the developing countries. One of the HBV proteins, HBx, modulates the host cell machinery via several mechanisms. In this study we hypothesized that HBV enhances cell proliferation via HBx-induced microRNA-21 in hepatocellular carcinoma. HBx gene was over-expressed, and miRNA-21 expression and cell proliferation were measured in Huh 7 and Hep G2 cells. miRNA-21 was over-expressed in these cells, cell proliferation and the target proteins were analyzed. To confirm the role of miRNA-21 in HBx-induced proliferation, Hep G 2.2.1.5 cells (a cell line that expresses HBV stably) were used for miRNA-21 inhibition studies. HBx over-expression enhanced proliferation (3.7- and 4.5-fold increase; n = 3; p<0.01) and miRNA-21 expression (24- and 36-fold increase, normalized with 5S rRNA; p<0.001) in Huh 7 and Hep G2 cells respectively. HBx also resulted in the inhibition of miRNA-21 target proteins, PDCD4 and PTEN. miRNA-21 resulted in a significant increase in proliferation (2- and 2.3-fold increase over control cells; p<0.05 in Huh 7 and Hep G2 cells respectively) and decreased target proteins, PDCD4 and PTEN expression. Anti-miR-21 resulted in a significant decrease in proliferation (p<0.05) and increased miRNA-21 target protein expression. We conclude that HBV infection enhances cell proliferation, at least in part, via HBx-induced miRNA-21 expression during hepatocellular carcinoma progression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Carcinoma Hepatocelular/genética , Virus de la Hepatitis B/fisiología , Neoplasias Hepáticas/genética , MicroARNs/genética , Fosfohidrolasa PTEN/genética , Proteínas de Unión al ARN/genética , Transactivadores/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo , Transactivadores/genética , Transfección , Proteínas Reguladoras y Accesorias Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...